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Outline

� Introduction

� Theoretical Motivation

Why do we want to do this experiment?

� Experimental Technique

How we will do the experiment?

� Beam Request

What did we request from the PAC?

Physics goals of this experiment complement those of
E99-114 and benefits from its experience with the RCS ex-
perimental technique.
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Real Compton Scattering: Introduction

� Key element in Program of Hard Exclusive Reactions

RCS
Elastic Form Factors
DVCS
DVMP

� Common issues:
interplay between hard and soft processes
Onset of asymptotic regime
Role of hadron helicity flip

� Uniqueness
� Vary both s and t � Weighting of quarks, e2

q

� independent integral of GPD’s, x−1
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Real Compton Scattering: Introduction

Compton Scattering off nucleons provides information
on the substructure of nucleon in terms of quark and
gluon d.o.f. → extremely complicated

Compton scattering in various kinematical regions

� low energy
→ dominated by nucleon as a whole

� deeply virtual CS; low | t |, large Q2

→ handbag diagram involving skewed parton
distributions

� ’wide angle’ CS; low Q2, large | t | and s ensures
dominance of short distance behaviour

What is the reaction mechanism?
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What is the reaction mechanism?

hard gluon exchange

� 3 active quarks

� 2 hard gluons

� 3-body "form factor"

handbag

� 1 active quark

� 0 hard gluons

� 1-body "form factor"

� Which, if either, dominates at few GeV?

� We will be able to distinguish among the competing mechanisms.
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Asymptotic (pQCD) Mechanism

hard gluon exchange

Brodsky/Lepage

Kronfeld, Nizic

Vanderhaeghen, Guichon

Brooks, Dixon, ...

� momentum shared by hard gluon exchange
� 3 active quarks
� valence configuration dominates
� soft physics in distribution amplitudes, Φ(x1, x2, x3), Φ(y1, y2, y3)

� constituent scaling: dσ
dt

= f(θCM)/s6

� Must dominate at "sufficiently" high energy(?)
� Has predictions for polarization observables, K

LL
= A

LL
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Constituent Scaling

γp → γp

Approximate scaling
dσ
dt

= f(θCM)/s6

Brooks&Dixon Phys.Rev.D62:114021,2000

Cornell data approximately support

scaling but . . .
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Asymptotically we expect pQCD to be dominant, but when?
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Handbag Mechanism for (s, −t, −u) ≫ M2

handbag

Radyushkin

Diehl, Feldman, Jakob, Kroll

� One active parton

� Momentum shared by soft overlap

� Feynman mechanism

struck quark nearly real (x ∼ 1) (co-linear with proton)

� Form factor like expression
dσ
dt

= dσ
dt

|
KN

f(t)

� Straightforward predictions for polarization observables
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Handbag Approach and GPD’s

Radyushkin

Diehl, Feldman, Jakob, Kroll

handbag

� Factorize into hard scattering on single

quark and moments of GPD’s at

skewness ξ = 0

� hard scattering: Klein-Nishina from nearly

on-shell parton

� Soft physics: Compton form factors

RV(t), RA(t) and RT (t) relating emis-

sion and reabsorption of struck quark in

the proton

Compton form factors:

R
V
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a

e2
a

∫ 1
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dx

x
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Elastic form factors:

F
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ea
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Handbag Predictions for WACS

Cross section from E99-114
dσ
dt

=
dσ

KN
dt
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Polarization Observables
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Handbag in CQM

...

handbag

Miller in IA approximation of handbag.

Massive quark

Model wave function same as for E/M

form factors

Orbital angular momentum and

nonconservation of proton helicity
Good agreement with cross section data

But A
LL

6= K
LL

, backward angles

A
LL

≃ −K
LL
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Physics Goals

� Measure A
LL

(never been measured) at two scattering
angles:

θCMS
γ = 70◦ corresponding to −t = 2.4 (GeV/c)2

θCMS
γ = 140◦ corresponding to −t = 6.4 (GeV/c)2

� Provide an experimental test of the RCS reaction
mechanism: does the photon interact with a constituent
or a current quark?

� Provide an additional test for hadron helicity
conservation and pQCD
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Experimental Layout

Kinematic Range

Eγ = 4.3 GeV, s = 9 GeV2

θcms = 70◦, 140◦

� mixed e − γ beam

→ e − p/RCS
discrimination needed

→ control of backgrounds

� good angular resolution
� Polarized target
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Calorimeter

� 1750 lead glass blocks, TF-1 type

� Arranged as 56 rows in 32 columns

� Approximately 1.2 meters by 2.1 meters

� Built by GEP-III, to be used by SANE

and SemiSANE (BETA) and E03-003
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Discrimination of e − p/RCS

Deflection of electrons by magnetic field.
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Polarized Target
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Kinematics

kin. t θlab
γ θcm

γ θlab
p Elab

γ pp L

P# (GeV/c)2 degree degree degree GeV GeV/c m

P1 -2.4 25 70 39 3.00 2.02 7.0

P2 -6.4 82 140 12 0.87 4.25 2.5

kin. θlab
γ t θcm

γ

dΩγ

dΩp
D N

RCS
∆A

LL

P# degree (GeV/c)2 degree total

P1 25 -2.4 70 0.58 1.6 1850 0.05

P2 82 -6.4 140 24.5 5.5 3250 0.07

kin. θe
V

θp
V

HMS p(proton) θrms

P# degree degree degree GeV/c mrad

1 1.7 4.1 39 2.02 1.75

2 15.4 0.6 12 4.25 0.83
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Beam Request

Kin. beam, time

P# Procedure nA hours

P1 BigCal calibration 1000 8

P1 RCS data taking 90 176

P2 RCS data taking 90 240

Packing Fraction Measurements 90 16

Moller Measurements 200 18

Beam Time 458

BigCal angle change 8

Target Anneals 52

Stick Changes 36

Overhead Time 96

Requested Time 506
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Error Budget

Asymmetry measurement relaxes demands on some
systematic error sources (solid angles etc) which cancel but
requires attention to others. The largest sources are:

Target polarization 2%

Beam polarization 2%

π0 subtraction(shape) 3%

epγ subtraction 1%

Total 4.2%
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Conclusions

� Experiment straightforward - based on experimental data
and extensive experience.

� Test onset of handbag approach in terms of GPD’s.

� Positive indications for handbag allows extraction of
non-perturbative structure of hadrons in form of GPD’s.

� Explore role of finite quark masses in polarization
observables.

� Shed light on nature of quark helicity flip processes.

� As byproduct Aπ
LL

will also be measured.

� Scheduling with SANE and Semi-SANE captures setup
savings.
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PAC 28 Recommendation

Merely due to lack of available beam time, the PAC recommends
that only the kinematic point in the backward hemisphere be
measured.
Approved with A− rating for 14 days.
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Simulation

� Presence of radiator creates unique conditions
� Beam blows up
� Large number of secondary particles (electrons,

photons) - implications for rates in calorimeter; where
to place shielding.

� Include target magnetic field
� Physics backgrounds

� Elastic electron scattering
� Quasielastic electron scattering
� π0 → 2γ from proton and target materials
� Include target magnetic field
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Status

� GEANT4 - Justin Wright, UVA graduate student
� Electromagentic part moving along well
� Second part hindered by lack of the physics in GEANT4
� Also by our unfamiliarity with the standard practice for

incorporating new physics.
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GEANT4 Simulation

� Geometry

� Upstream beam pipe
� Downstream beam pipe (Helium bag

or flaring Aluminum tube)
� Upstream copper radiator (10%)
� Target can (simplified), including the

target cell and magnet
� Big Cal
� Simple plane detectors to represent

the solid angle openings of the

Calorimeter and the HMS
� Fields

� The target magnet’s field (read in from

a table)

� Electromagnetic processes as currently

implemented by the Geant4 collaboration

� Electron Ionization
� Electron Bremsstrahlung
� Photo Electric Effect
� Compton Scattering (from electron)
� Pair Production
� Annihilation

� Data collection and analysis

� Each primary electron represents a

single event
� All daughter particles are tracked fully
� All physical objects can be treated as

perfect detectors, recording all

interactions
� Separate code converts this data into

root trees or paw ntuples
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Pure Photon Beam
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Details

HMS resolution < 0.1%

HMS acceptance ±27(h) ± 70(v) mr

HMS ∆p
p

±9%

Angle Resolution 0.9 mr (h) 0.9 mr(v)

HMS vertex resolution ±1 mm

Photon fluence dk
k (0.10 + 0.018 + 0.01)

BigCal block sizes 4 × 4 cm

BigCal σ
E

5%/
√

E

BigCal 1.2 × 2.1 m

Möller < 1.5%

Target thickness 1.5 g/cm2 of NH3, 0.3 of He

Multiple scattering 1.7 (P1), 0.8 (P2) mr

Lucite Cerenkov hodoscope

thick horiz. vert. #

cm cm cm

x 1.25 80 12.5 16

y 2.5 12.5 160 8

10 p.e. 11% r.l., xrms = 3.6 cm

kin. t u θlab
γ θcm

γ θlab
p Elab

γ pp L

P# (GeV/c)2 (GeV/c)2 degree degree degree GeV GeV/c m

P1 -2.4 -4.8 25 70 39 3.00 2.02 7.0

P2 -6.4 -0.75 82 140 12 0.87 4.25 2.5
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Coils restrict access

02 04 06 08 01 0 01 2 01 4 01 6 0
! 7 ! 6 ! 5 ! 4 ! 3 ! 2 ! 1 0

CM San gl e

t
tv s C M Sa n g le

02 04 06 08 01 0 01 2 01 4 01 6 0
> 8 > 7 > 6 > 5 > 4 > 3 > 2 > 1 0

CM San gl e

u
u v s C M Sa n g le

Magnet coils restrict access to range of angles: here the field direction is

along the beam line.
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π0 photons
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Dilution from other materials - Hall A Al data
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Empty target

Run Number Target Charge Thickness Integrated Npion

Coulomb g/cm2 e − N Luminosity and Electrons

2377 Al 0.065 0.54 2.1 · 1022 57 (total)

2390 LH2 0.040 1.13 2.7 · 1022 3635+4300

Nquasi/Nfree × (PN + PHe)/Pfree = 0.02 × (7 + 2.4)/3 ≃ 0.06
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Dilution from other materials - Simulation results

F =
Nπ

p

Nπ

freep

× Tp × Tπ × CL × (PN + PHe)/Pfree =
1

3.5
× 0.55 × 0.4 × 1

2
× (7 + 2.4)/3 ∼ 0.10
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Rate test
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Miller approach compared to Huang et al.

Miller

� constituent quark model
� soft physics embodied in wave function (power law)
� mq ≃ 350 MeV
� non-zero quark-helicity flip
� ⇒ K

LL
6= A

LL

Huang et al.

� current quarks
� proton helicity flip non-zero
� Φ2 = −Φ6; double-flip amplitudes
� Φ2, Φ6 are non-zero with αs corrections, without both are zero.
� ⇒ K

LL
= A

LL

Miller’s quark helicity flip implies Φ2 6= −Φ6 even with αs corrections, and

large compared to non-helicity flip

Initial State Helicity Correlation in Wide Angle Compton Scattering – p.32/31


	Outline
	Real Compton Scattering: Introduction
	Real Compton Scattering: Introduction
	What is the reaction mechanism?
	Asymptotic (pQCD)
Mechanism
	Constituent Scaling
	Handbag Mechanism for $(s, -t, -u)
gg M^2$
	Handbag Approach and GPD's
	Handbag Predictions for WACS
	Handbag in CQM
	Physics Goals
	Experimental Layout
	Calorimeter
	Discrimination of $e-p/RCS$ 
	Polarized Target
	Kinematics
	Beam Request
	Error Budget
	Conclusions
	PAC 28 Recommendation
	Simulation
	Status
	GEANT4 Simulation
	Pure Photon Beam
	Details
	Coils restrict access
	$pi ^0$ photons
	Dilution from other materials - Hall A Al data
	Dilution from other materials - Simulation results
	Rate test
	Miller approach compared to Huang et al.

